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Geometrical SO(4,l) gauge theory as a basis of extended 
relativistic objects for hadrons 

R R Aldinger 
Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA 

Received 14 November 1989 

Abstract. The geometrical structure for a collective model description of extended relativis- 
tic single hadron systems is investigated by considering a Yang-Mills theory of the de 
Sitter group SO(4, 1). The full SO(4, 1) symmetry is broken down to that of its SO(3, 1) 
stability subgroup resulting in a set of Goldstone fields which are taken to represent 
coordinates of a point in the de Sitter fibre space and are used, along with the original 
linear gauge fields, to define the vierbein and spin connection on the restricted bundle: 
P‘(’W4, SO(3, 1 ) ) ~  P(W4, SO(4, 1)). The symmetry breaking parameter is taken as a 
fundamental length relevant to hadron physics. The original linear gauge fields generate 
a type of parallel transport which is the curved space analogue of development into the 
flat affine tangent space and serves as the bridge between the geometrical and purely 
gauge-theoretic descriptions. Upon quantisation, the generator of development in the 
unitary gauge (Higgs mechanism), for a special class of horizontal Lorentz cross sections, 
goes over into the de Sitter space momentum which serves to break the mass-spin degeneracy 
inherent in the PoincarC group description and supplies a curved space perturbation in 
the resulting relativistic Hamiltonian. The Hamiltonian is used to determine a completely 
solvable set of dynamical equations of motion resulting in the Zitrerbewegung of the 
extended relativistic object. 

1. Introduction 

Strongly interacting particles are classified using the internal symmetry groups while 
their spacetime related attributes are typically gauged by using symmetries of the 
physical PoincarC group. However, any PoincarC gauge model concerned with the 
geometrical aspects of elementary particles will inherit the well known drawback 
associated with the original attempts at obtaining a gauge-theoretical interpretation of 
general relativity [l-51. Namely, that only the local Lorentz invariance is realised as 
an ordinary gauge invariance while local translations are absorbed by invariance under 
general coordinate transformations. As a result, the fundamental underlying concept 
of gauging using specific local symmetry transformations does not apply and the 
complete Yang-Mills picture is not maintained. 

However, a general procedure has been laid out that eliminates the difficulties 
associated with earlier attempts to formulate a gauge theory of gravity in which explicit 
gauge invariance is obtained as a consequence of the spontaneous breaking of some 
larger symmetry [6-111. For example, one may consider the physical Poincari group 
as the contraction limit of one of the de Sitter (ds)  groups leading to a spontaneously 
broken Yang-Mills theory in which the symmetry-breaking parameter is the radius of 
the d s  space where the direction of the breaking is specified by the usual Higgs-type 
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mechanism. Consequently, translational gauge invariance and invariance under general 
coordinate transformations are kept separate and mix only after the Higgs field has 
been ‘fixed’ in some prescribed direction (choice of gauge). 

Therefore it is possible to retain the complete gauge picture throughout without 
absorbing local translations as long as each Minkowski tangent space is replaced with 
a non-compact homogeneous d s  space (characterised by the fundamental length para- 
meter, R )  such that when the strength of the symmetry-breaking tends to infinity, the 
d s  group goes over into the physical Poincark group and each d s  space becomes a 
typical Minkowski space. In the contraction process, the four dimensionless parameters 
of the d s  group are scaled by a factor of R and become the translation parameters of 
ISO(3, l ) .  

In this paper we make use of this formalism in order to investigate the insights 
into the internal spacetime sector of chargeless non-interacting single hadron systems 
that can be gained by considering a spontaneously broken Yang-Mills theory of the 
d s  group SO(4, 1 ) .  More specifically, the questions concerning a spacetime related 
non-Abelian gauge field description of a geometrically motivated mechanism for 
non-locality-confinement, a completely solvable quantum relativistic dynamics of 
non-local microstructures, and an associated experimentally verifiable mass-spin trajec- 
tory relation are addressed by complementing the constituent quark-gluon substructure 
(the ‘fast’ variables) of the conventional colour gauge field theory with a collective 
model (‘slow’ variable) geometry realised on a soldered (Cartan-type) [12] d s  fibre 
bundle erected over a strongly curved but gravitationally flat four-dimensional 
spacetime. 

That is, we adopt Drechsler’s [ 13,141 original idea as our fundamental physical 
picture for a geometrical gauge theory of strongly interacting particles and ignore any 
long-range gravitational fields in order to concentrate exclusively on the short-range 
(hadronically-induced) affects on spacetime by assuming that the local non-flat charac- 
ter of the underlying spacetime in the immediate vicinity of an attached micro-ds space 
(with radius on the order of one fermi) can be directly attributed to the hadronically- 
induced solder mechanism which essentially allows one to associate the physically 
observable spacetime imprint with the internal ds  fibre space. Therefore we consider 
the internal ds  group SO(4, 1 )  as a spacetime related symmetry group while establishing 
a short-range modification of the conventional Minkowski geometry (typically associ- 
ated with the arena for the PoincarC model of structureless elementary point particle 
kinematics) leading to a curved-space gauge theory for a collective model description 
of relativistically extended hadronic structures valid in the strongly interacting regime 
(= 1 GeV) of QCD. 

The organisation of the paper is as follows. In section 2, we review the details of 
an S O ( 4 , l )  gauge theory. The pullback of the Cartan connection in P(%J31,, SO(4 , l ) )  
to P’(%R4, S O ( 3 , l ) ) c  P(Zm,, SO(4 , l ) )  is emphasised. The Goldstonians of the sym- 
metry-breaking mechanism are taken to represent coordinates of a point in d s  space, 
X: = SO(4, 1) /S0(3 ,  and, using the usual group theoretical techniques of nonlinear 
realisations [15-171, are used along with the original linear gauge fields to define the 
vierbein and spin connection [18, 191. A description of the complete geometrical 
picture (concerning the effects of both spacetime curvature and torsion) is taken up 
in section 3 by considering a curved space generalisation of the operator of development 
[20] along with its associated notion of parallel transport a la Stelle and West in [8]. 
Also discussed in this section are certain gauge-fixing relations which serve to simplify 
the full gauge-theoretic description thereby allowing one to make contact with the 
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model of the quantum relativistic rotator, QRR [21-251 (which has met with much 
success in describing the rotational aspects of single hadron systems). Quantisation 
of the SO(4, l )  gauge theory is carried out in section 4 where we employ the usual 
gauge concept of particle interactions for a relativistic theory by interpreting the 
SO(4, l )  generator of development as the SO(4, 1) ‘generalised momentum’ in which 
the pseudo translational piece supplies an experimentally detectable perturbation to 
the conventional Minkowskian flat-space description. A quantum relativistic Hamil- 
tonian is obtained by applying the usual techniques of Dirac’s constrained Hamiltonian 
mechanics [26] where the constraint relation leads to an experimentally verifiable 
(rotator-like) mass-spin trajectory relation. In section 5 we derive a set of solvable 
dynamical equations of motion which leads to the Zitterbewegung of the extended 
object. Finally, the main results obtained in this paper are presented in section 6. 

2. SO(4,l) gauge theory and Higgs mechanism 

Consider the vacuum state of spacetime to be four-dimensional pseudo Riemannian 
with constant curvature of radius R and possessing a d s  SO(4, 1) as its global symmetry 
group of transformations. The four-dimensional manifold with constant curvature can 
be parametrised by five coordinates O A  which for SO(4, 1) are constrained according 
to: 

@ A @ B v A B  = - R 2  A, B = 0, 1,2,3,  5 

where the d s  metric T A B  = diag(1, -1, -1, -1, -1). The d s  Lie algebra G is generated 
by the R4,, angular momenta J A B  = -JBA which satisfy the commutation relation 

[ J A B ,  JCDl = - i h A D J B C  - v B C J A D +  T]BDJAC - v A C J B D ) *  (2.1) 
Given some specific point of coordinates T A  the SO(4 , l )  generators can be decomposed 

( 2 . 2 ~ )  

as [61 

J A B  = JIJ + @ A n J  + @ E T ,  

where 

J ,  = J A B - R - 2 ( @ A @ C J C B  - @ B @ C J A C )  (2.2b) 
0 0  0 0  

and 

rj = R - ~ @ ~ J ~ ~  (2.2c) 

with i , j  = 0, 1,2,3.  That is, the i,j have components only in the orthogonal subspace 
to T A  such that: T A J t ,  = TAnl  = 0. The Jl, generate the SO(3, 1) stability subgroup of 
T A  (keeping $)A  fixed while rotating its tangent space) and the r, are generators of 
infinitesimal translation of TA. Equation ( 2 . 2 ~ )  leads to the usual four-dimensional 
realisation of SO(4, 1): 

( 2 . 3 ~ )  [JI , ,  J k / l  = - i ( v d A k  - vjl.J,/ + v j / J i k  - vtkA/) 

[ J i , ,  r k l  = -i(vtkr, - v g r k )  

[rl ,  r,]=iR-’J,, 

where the SO(3, 1) metric vI, =diag(l ,  -1, -1, -1). 

(2.3b) 

( 2 . 3 ~ )  



Therefore the Cartan metric tensor, CA, = f fc f &, , may be expressed according to [27] 

O 1. ‘=[Ck,y C U I = [  0 (6/R2)TlJ 
C,,ki c y , k  6( r]dT,k - TllTik) 

To allow for local group transformations we now associate to each point xcL of the 
underlying spacetime manifold E4 (no longer in the vacuum configuration) an internal 
space Z: = S0(4,1) /S0(3,  l),  which is a local copy of the vacuum (one-sheeted 
hyperboloid non-compact in time and compact in the space directions). The union of 
fibres, Z”, represents the ds  fibre bundle: E = U Z: where X: for every x E YJ14 is related 
to the typical fibre Z4 by a map: Z4,+Z4. The d s  bundle E ( E 4 ,  X4, SO(4, l ) ,  P) is 
associated to the principal d s  (frame) bundle: P(YJ14, SO(4, l ) ) .  On each Z: we have 
a point @ t ( x )  which determines which SO(3, l), subgroup of SO(4, l )  is going to be 
the physical Lorentz group at each x, E YJl,. That is, @,“(x) is the Higgs field which 
determines the ‘direction’ of the symmetry breakdown: SO(4, l )  + SO(3, l ) .  

The pullback of the Cartan connection in P to “4, ?,(x), specifies the transport 
of some SO(4, l),-vector into an SO(4, l),+dx-vector and thereby determines the nature 
of a local d s  frame when one performs an infinitesimal transformation in the p direction 
on E4 where 

F,(x) = + F K A B ( ~ ) ~ A B .  (2.4) 

+,aA =a,@A+i‘,ACaC ( 2 . 5 )  

The gauge potentials {f,””} represent the 40ds rotation coefficients of the Cartan 
connection. The SO(4, l )  covariant derivative of is 

and parallel transport about a small closed curve on YJ14 results in the SO(4, l )  curvature 
of the Cartan connection in P: 

with curvature coefficients (gauge fields) 

8,yA” =a,F,””-a.F,””+~,”‘F..”-F,“‘F,,”. (2.6) 
Gauge invariance of the covariant derivative implies the typical inhomogeneous trans- 
formation character of the F, 

F; = gf,lg-l- igd,g-‘ 

where g E G = SO(4, l )  while the Cartan curvature field transforms homogeneously as 
expected 

8;” = g8,”g-l. 

The SO(4, 1) Lie algebraic decomposition implied by ( 2 . 2 0 )  corresponds to: G = 
H + T  where H is the subalgebra generating the stability subgroup H = SO(3, 1) of 
G = SO(4, l )  and T is a four-dimensional vector subspace R3,1 of G spanning the 
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tangent space T&:) to Z: at the specified point @. Accordingly, the Cartan 
connection defined on P is restricted to the principle bundle P'= 
P'(",, S O ( 3 , l ) )  c P(%J14, S O ( 4 , l ) )  (where there exists an injective map y :  PI+ P )  
leading to the pullback of I', to P': r+ = y * F p  such that 

r '" '" - 0  '" = L w  2 ' " v  'JJ - 6  '" 'T, ( 2 . 7 ~ )  

(2.76) 

and 

OFi = R r F 5 '  ( 2 . 7 ~ )  

(which corresponds to the (pseudo) translational gauge connection). Furthermore, the 
pullback of the Cartan field strength (2.6) decomposes according to 

$ X F Y A B J ~ ~  = tQpyl'Jv - sPviT, ( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

(2.8d) 

The field equations for F,"" are obtained by considering the Yang-Mills Lagrangian 
density [28]: 

L=-(K/2)CAEfiA h*hB (2.9) 

where K is a coupling constant, 6" is the curvature two-form 

fiA = $ICv dx'" A dx" 

of the Cartan connection and the Hodge * operator defines the dual form *fi2". 
In order to specify the Lagrangian density any further, one must first properly 

interpret the linear gauge potentials: {wFiJ, O P E } .  As a first step, we note that the 
decomposition of the pullback rr  into S O ( 3 , l )  and R3,1 components given in (2.7) is 
clearly no longer d s  gauge invariant but now holds invariance only under the subset 
of S O ( 3 , l )  transformations. Thus it seems as though we do not possess any means 
of parallel transporting ordinary Lorentz four-vectors while retaining the complete d s  
symmetry throughout. However, under the process of spontaneous symmetry break- 
down, four of the original ten d s  generators break allowing the passage to a nonlinear 
realisation of SO(4 , l )  on the homogeneous non-compact coset space, X4 (in which 
the nonlinearly transforming sets of SO(4, 1 )  fields transform independently according 
to their SO(3, 1) index type). It is therefore necessary to determine the induced 
nonlinear gauge fields on E(9X4,X4, SO(4, l ) ,  P) where the ds  fibre Z4= 
S 0 ( 4 , 1 ) / S 0 ( 3 ,  l),, (with the fixed point 0 in R4.1 3 X 4 )  is the space of nonlinear 
realisations of SO(4, 1). 

We begin by determining some convenient parametrisation of the point @(x) E Z:. 
Let $) be a fixed element of X4 and Jv be the generators of the stability subgroup 
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Ho = SO(3, l)o of Q, such that: J G t A  = 0. The arbitrary point @ ( x )  is reached from 

@ ( x )  by acting with any element g of G = SO(4, 1 )  according to the prescription: 
0 

Furthermore, for any element g there exists a unique decomposition 

g = gFgH g F E  F = G / H o = S 0 ( 4 , 1 ) / S O ( 3 ,  l)o g, E Ho=S0(3 ,1)0  

where g H Q , ( x )  = 0. In the standard exponential parametrisation scheme 

g, = exp( -it. T )  

such that the functions [ ' ( x )  completely determine the point Q , ( x ) .  
The original linear gauge fields {TWAB}  = {upfJ, e,'} are used to induce the nonlinear 

gauge fields on E(937,, X4, SO(4, l ) ,  P )  by applying the group-theoretical techniques 
of nonlinear realisations such that: 

- I -  AB iT, = ijT, J A B  = ifW,"J, - ig,'T! 
(2.10) 

The induced gauge fields {T,""} = {W,", g,'} represent what are known as the physical 
fields of a spontaneously broken gauge field theory and are explicitly expressed as 
rather complex functions of the linear gauge fields, coset parameters, and their deriva- 
tives such that: 

= exp(i6. . i r ) [a,  + itw,"J,J - i e , ' ~ ~ ]  exp(-it. T ) .  

(0) (0) 
where uptJ and 6 ,' denote those parts of the forms which are independent of the 
original gauge fields and depend upon the coset parameters and their derivatives only 
(the 'classical' parts of the nonlinear gauge fields) while 6,' and 6,' are proportional 
to the corresponding linear gauge fields and, along with upv and Or',  can be chosen 
as new independent variables. In the so-called 'unitary gauge' choice where [ ' =  
(O,O,O,O), W , " = W , ~  and e,'= e,'. The classical part of the vierbein defines the 
maximally flat (background) spacetime which has the isometry group SO(4, l ) .  

In terms of stereographic projection coordinates, Z', on Z4 (projection of the d s  

hyperboloid on the tangent hyperplane T,(C:) at the point 5) where 

- 

with Z' = 2'2, = (Z0)'- (2')'- (Z')' - (Z3) ' ,  we have that 

(2.12a) 

(2.12 b )  

and 
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where 

1 
1 - Z 2 / 4 R 2 '  

F ( x )  = 

The line element has the form 

where the spacetime metric tensor 
,oi (0) ( 0 )  

g w u  = e pi e yI = V~~[F(X) I ' .  

Under local SO(4, 1 )  gauge transformations, the induced fields transform according 

( 2 . 1 3 ~ )  

(2,136) 

where gHl E Ho = SO(3, l )o  is a (nonlinear) function of 6' and g E G = S O ( 4 , l ) .  There- 
fore WrV transforms as a typical connection while 8,' transforms homogeneously 
(characteristic of a nonlinear gauge field) according to the four-vector representation 
of SO(3, 1 )  but with the nonlinear element g H l .  

Since the SO(4, 1 )  translations are broken, the Jp' should not be considered as true 
translational gauge degrees-of-freedom but are instead of a set of four-vector fields 
(vector bosons) with the transformation character expressed by ( 2 . 1 3 ~ ) .  Of course we 
still retain the freedom in making some SO(3, 1 )  gauge choice and, in a certain sense, 
we have reduced the full d s  gauge theory down to a Lorentz gauge subtheory. However, 
in order to make the reduction to an SO(3, 1 )  gauge theory complete [29], it is necessary 
to go one step further and to eliminate the altogether which can be done quite 
naturally by identifying it with the spacetime vierbein h;' (the soldering condition): 

( J ' = L '  w w  (solder mechanism) (2.14) 

(the components of which are given a priori and therefore cannot participate in the 
description of any specific gauge field description). 

So, the Higgs mechanism enhanced by soldering allows one to interpret the non- 
linear gauge fields {&@", gw'}, expressed by ( 2 . 1 1 ~ )  and (2.11b) as the spacetime spin 
and vierbein fields {Gw', Lw'} where the components, Epi, of the soldering form provide 
an isomorphism between the tangent space to spacetime at X E  Ed: Tx(932,) and the 
tangent space to Z: at t ' ( x ) ~ X : :  Tc(x l (Z:) ,  where the ['(x) are selected out by the 
cross section (choice of gauge). 

Under the soldering condition, the Z: metric qlJ uniquely determines a metric on 
B4 thereby establishing an association between the strictly spacetime related features 
based on the g,, and the attached internal dS space with group metric vI, where: 

g,, = h,'h,Jrl,. (2.15) 

Consequently, the structural group G = SO(4, 1 )  can be interpreted as acting on either 
the vacuum images, X:, or on spacetime itself. Not only does the soldering mechanism 
between Tx(E4) and Tc(xl(X:) provide a metric on E, but it also supplies a means of 
measuring distance in the attached fibre space. That is, without soldering, the radius 
R of the internal d s  space X: has no direct physical implication. Distance has meaning 

to a representation of the SO(3, 1 )  stability subgroup 

- i 

iIw. 1 - I  I] J ,  = gkfl(ito@'J8J)gH: +gH,a,gHi 

'TI = gH, ( - i 6 F ' ~ ,  )g H: 

- -  
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only on ’IJZ, where it is measured in metres and soldering transfers the meaning of 
distance to the internal E.“, so that R is, once again, measured in units of metres. 

Using the decomposition of the Cartan field strength (2.8) along with (2.14) and 
the explicit form of the Cartan metric, CAB, allows the Lagrangian density (2.9) to be 
expressed in terms of the connection and solder forms in the bundle P’(ZRJ7,, SO(3, 1 ) ) .  
Up to the invariant volume element we have that (see Zardecki [28]): 

_ .  
L = 3 K [ ( 1 / 2 R ’) I?,,, ppKJ” + aRijPY R 

+(1/2R4)g,‘“g”“(77,1~,k - 7 7 J 1 7 7 , k ) ~ : , ~ J ~ E ~ E t - ( l / 2 R 2 ) S l , v S ‘ l r u ]  

where the SO(3, 1 )  curvature, R,,,”, is given by ( 2 . 8 ~ )  with ( 2 . 1 1 ~ )  and the torsion, 
s,”, is given by (2.8d) with ( 2 . 1 1 ~  and b) .  Thus, the symmetry-breaking parameter R 
appears as a natural dimensional constant which essentially sets the scale for the 
associated fundamental interaction (which for the gravitational coupling, is of the 
order of the Planck length R = RN = m and for the short-range strong interaction 
should be of the order of one fermi: R = Rs = m). The first term is the gauge- 
invariant curvature scalar of !Ill4, the second term is the curvature kinetic energy of 
the gauge fields (the topological invariant) and the last term is the torsion kinetic 
energy. (That torsion has its origin in a d s  SO(4, 1 )  gauge theory was already shown 
by Townsend [30].) The third term is the curvature scalar of the group SO(4, l ) ,  the 
vacuum polarisation (‘cosmological’ constant), and sets the interaction scale. 

As noted by Zardecki in [28], when the action is varied with respect to 6,‘ and 
E,’ ,  the following pair of field equations in the bundle P’(9X4, S O ( 3 , l ) )  is obtained: 

~ , [ ~ g ~ ’ ~ 2 ~ 1 J ~ Y + ( 2 / R 2 ) ( ~ ’ ~ ~ ’ Y - ~ ’ C L ~ ’ Y ) ] + ( 2 / R 2 ) ~ g ~ ” 2 ~ ~ ’ Y  = 0 ( 2 . 1 6 ~ )  

D , [ l g l ” 2 ~ ’ ~ u ] + l g 1 ’ ’ 2 [ ~ ’ Y + ( 3 / R ‘ ) ~ ” ]  = O  (2.16b) 

where D, denotes the covariant derivative in P’(!Il14, SO(3 , l ) ) .  In the infinite symmetry 
breaking limit (when R + a), SO(4, 1 )  goes over into ISO(3, 1 )  and the field equations 
supply both the Yang equation and Einstein’s equation extended by torsion. Therefore 
the theory described by ( 2 . 1 6 ~  and b )  is equivalent to that of Einstein’s gravity when 
the symmetry breaking parameter is very large and the constraint: 3,’’ = 0 is imposed. 

In this work our interest is not with the fundamental length associated to gravitation 
but lies in the interpretation of R as a naturally occurring length appropriate as the 
scaling parameter relevant to hadron physics where Gs = R$ ( Rs = 102’R, with the 
Planck length RN = ( GNh/c3)’I2 = 2.0 x m). The typical Schwarzschild relation 
valid for hadronic dimensions reads: 

2GMp= R =- h 

C2 MPC 

where we have introduced the Compton wavelength of the proton, and one readily 
determines that G =  103*GN = Gs which is of the order or the strong interaction. 
Therefore, in complete analogy with the gravitational coupling, the strong force should 
manifest itself through the explicit curvature of spacetime. We now reinterpret Ein- 
stein’s cosmological constant (vacuum polarisation) as a new large ‘cosmological’ 
constant As = ( Msc/ h)’. The corresponding field equations, being of the Einstein 
type, constitute a gauge theory of strong spin-2 interactions and the presence of the 
As term is equivalent to introducing a mass term in the associated Lagrangian. 
Therefore the space within the hadron becomes (strongly) curved and might cause, in 
the most symmetrical state (ground state configuration), a metric of the d s  type where 
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the associated Schwarzschild radius (Compton wavelength) acts as a natural 
confinement mechanism. 

This allows one to view the structure of composite particles and hadron spectroscopy 
as originating from a purely geometrical theory of spacetime which finds complete 
justification in the context of strong gravity theories [31] invoked in the study of hadron 
physics [32-361 where the space within a hadron can be described by a metric of the 
d s  type and the radius of this space is of the order of the range of the strong interaction. 
Beyond the radius of the interaction, the hadronic matter distribution falls rapidly to 
zero and a strictly flat spacetime is consequently established (in the absence of 
long-range gravitational perturbations). That is, the vanishing of the hadronic matter 
distribution is viewed as inducing a contraction of the d s  group SO(4, 1) down to the 
flat space ISO(3, 1) group, the kinematical group for structureless elementary point 
particles embedded in M4. 

The usual notion of parallel transport of a Lorentz vector V' lying in Tx(9R4) is 
generated by the covariant derivative: 

D,, = a, + i&,"JIJ 

by first converting the world components of V p  into its nonlinear ones 
vierbein field 
results in the SO(3, 1) rotation 

using the 
= h;L'V. Transport about an infinitesimal closed curve on spacetime 

[ Dw, Dv] = i$&IJJu 

(2.17) 

which represents the standard Yang-Mills field strength for the non-Abelian Lorentz 
group. Therefore the usual concept of parallel transport generated by the SO(4, l )  
covariant derivative leads to the appearance of spacetime curvature only, thereby 
falling short of describing the complete geometrical picture of a d s  SO(4, l )  gauge 
theory. And the underlying reason for this short-coming can be attributed to the 
absence of the appearance of a torsion term, the origin of which can be traced back 
to the fact that the (pseudo) translational gauge component does not take part in the 
typical transport process. In order to obtain the complete geometrical picture, we 
follow the work of Stelle and West in [8] and construct a second type of differential 
operator along with its associated notion of parallel transport (which in the present 
formulation is a (4+ 1) curved space analogue of the differential geometric process of 
development into a flat affine tangent space) in which the translational component 
turns out to play the central role. 

3. The development process and gauge conditions 

The generator of development specifies the horizontal direction and is defined in terms 
of the original linear gauge fields: 

(3.1) A, = a, + i&oPi*Jii - i0,'7ri 

and is a purely gauge-theoretic expression which essentially serves to map curves and 
vector fields defined on PI4 into their X4 images. The idea is equivalent to that of 
rolling a copy of X4 along a curve defined on Tx(9Jln,) thereby transferring the curve 
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and any associated vector field onto its surface. The presence of the linear gauge fields 
{ w p y ,  e,'} is to ensure that X4 will not 'slip' or 'twist' about the vertical as it rolls. We 
therefore interpret the arbitrariness in the choice of origin and coordinate axes orienta- 
tion of Z4 as the freedom in making translational and rotational gauge choices. 

Transformations induced by travelling about an infinitesimal closed path on space- 
time are specified by the S O ( 4 , l )  curvature fields 

[A,, AV] = iiQ,LJJ,, -iS,,,,'7-r, (3.2) 

where the rotational and translational sectors have already been expressed in ( 2 . 8 ~  
and d ) .  In the vacuum state {U,', e,'} = { O ,  0} and spacetime is a ds  space X4 with 
A , = a , .  That is, E;,' and Z4 fit together exactly and development involves no 
observable changes in the local frame at all. For this trivial gauge choice, the spin 
connection and vierbein field {OPv, i,'} are expressed as functions of the coset para- 
meters and their derivatives only as given by ( 2 . 1 2 ~  and 6). 

We now consider the purely geometric structure of spacetime by considering the 
action of A@ on an arbitrary nonlinear vector field, V' ,  such that: 

A , V ' =  (a, +i~O,"J,,fih;'.rr,)V' = (0, +ih;'.ir,)v'. (3.3) 

The meaning of this expression is the following (where we have used the notation 
of Stelle and West). First parallel transport the vector V ' (x+dx)  (lying on 
Tc(x+dx(x:+dy)) across spacetime from dx, to x@ using 13, resulting in V'(x) (lying 
in Tc(x l (X: ) )  followed by an internal parallel transport in Z: (with help from the d s  

boosts, 7-r)) from [ '(x) out to [k(x; x + d x )  (which lies in T&(x+d,.)(x:)). Therefore 
the process of development allows for the freedom in moving to various points in the 
internal d s  fibre space attached to the point xF E Ed. (Note the change in sign of 
the translational term in (3.3) which is necessary for this interpretation and holds in the 
present formulation as a consequence of the S O ( 4 , l )  Lie algebraic automorphism: 
T, + -7-rt.) This description is simply a restatement of the fact that the gauge transforma- 
tion induced by ih;'n, is completely equivalent to parallel transport in 2: generated 
by the d s  space covariant derivative: 

1(0) 
( 0 )  
D ,  = a, +is w ,"JI, 

( 0 )  8 )  = c p k ' z k  - from ["(x) E X: out to .$:(x; x + dx)  E 2:. The d s  spin connection is w , nu,  9 

where the ds vierbein field, h k n ,  serves to connect coordinate-induced (holonomic) 
indices n, r, s to the anholonomic i , j ,  k ones. 

In analogy with the action of A, on a nonlinear vector field as expressed by (3.3),  
we have that the curvature terms as given by ( 2 . 8 ~ - d )  may be expressed according to: 

(3.4a) 

'0) 

A B  1 - IJ 48," J A B  3QrY J,, + S P u ' ~ ,  
which has the geometrical interpretation that the d s  curvature (rotational sector): 

QPu1J = + R - 2 (  &,'Ki - &"'K;) (3.4b) 

supplies the net SO(3, 1 )  rotation of the nonlinear components of the translated vector 
and is the difference between the usual Lorentz curvature tensor on spacetime (given 
by (2.17)) and the Lorentz curvature tensor of ds space. The torsion tensor (translational 
sector) 

(3.4c) ' = a  61-a i l + ~  
1 

f i k -  @U F Y Y p f i k  Y W v ' k h +  
- k  
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indicates the amount by which an image curve on E:, corresponding to a small closed 
curve on spacetime, fails to close. (The transported vector does not remain attached 
to the parallel congruence of geodesics but is rotated relative to nearby geodesics by 
the action of (3 .4c) . )  

For the S O ( 4 , l )  gauge theory, the mechanism of spontaneous symmetry breakdown 
is triggered by constraining the non-dynamical field @."(x) to a (4+ 1) d s  space with 

= - R 2 .  The local SO(4, 1) invariance can be used to orientate @."(x) in some 
prescribed direction which breaks the full ds symmetry down to that of one of its 
Lorentz subgroups. For example, in the so-called 'unitary gauge' one sets 

@."(x) = SSAR 

so that from ( 2 . 2 ~ )  

T,  = R-'J5,  

and from (2 .5 and 2 . 7 ~ )  

V,@'(X) = R ~ , " ( x )  = Op' V,Q5(X) = 0. ( 3 . 5 )  
That is, for the unitary gauge choice the Higgs field is constrained to point in the fifth 
direction and the corresponding coset parameters C'(X) = (0, 0, 0,O) everywhere. Thus 
any possible reference to the Goldstone field and its derivative is eliminated from the 
Lagrangian and any trace that the f ( x )  might play in a full ds SO(4, 1) gauge theory 
is entirely suppressed. So the unitary gauge demands that 

(unitary gauge) where OFr is identified with the spacetime vierbein field that provides 
the solder between TX(YJL,) and Tt(xl(X:). 

While the complete dynamical theory should be fully gauge-invariant, observations 
and the description of any specific physical model should be associated with the 
additional imposition of certain gauge-fixing conditions. These gauge constraints would 
lead to the vanishing of certain curvature fields (rotational and/or translational) 
contained in ( 3 . 4 ~ ) .  For example, if = O  over some region in spacetime, then 
(adhering to the usual principle of classical gauge field theory) there should exist a 
horizontal cross section (gauge) with OriJ = O  (complete absence of S O ( 3 , l )  gauge 
interactions). In this case, directions take on a global meaning in the region over 
RFu" = 0. In other words, trivialising the Lorentz gauge such that {O,", E,'} = (0, E,'} 
generates a ds ( 4 +  1) spacetime enhanced with torsion s,,' # 0, and as the strength of 
the symmetry breaking tends to infinity ( R  + CO) the theory limits to the description of 
spacetime carrying a telleparallelism [37]:  

R - x  - T4. 
Furthermore, for a spacetime to be as flat as possible, we expect that both Rpvv = 0 
and s,,,' = 0 and the preferred cross section should be the one that follows the horizontal 
direction with {O,', & I }  = (0, 0). However, classical gauge field theory suggests that if 
E,' = 0 we then obtain the rather unsatisfactory result of no observable change in 
position (the solder between Tx(m4) and T,,,,(Z;) breaks down and we completely 
lose the rigid linkage between fibre and base space). In order to circumvent this 
difficulty we trivialise the ds  gauge potentials in the unitary gauge by finding a certain 
class of Lorentz connected cross sections such that: 

{OH', L,'} = (0, 8,') 
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(inertial gauge) and impose the constraint s,,,’ = 0 (a global sense of position) leading 
to: 

a,,&,‘ -a&,‘ = 0 

R,,u = 0 

QFYv = R-2(6,’6,-’ - 8,’S:) 

which describes a maximally flat spacetime with: 

[A,, A”]  = i&’JJ,, = iR-’J,,. 

( 3 . 6 ~ )  

(3.6b) 

( 3 . 6 ~ )  

(3.7) 

Therefore for a d s  SO(4, 1) gauge theory the maximally flat spacetime is described by 
a non-flat connection thereby justifying its observable translational structure [38]  and 
one cannot regard the underlying spacetime in the immediate neighbourhood of its 
associated d s  fibre space to be strictly flat. With the d s  gauge group, the observation 
of translations is directly attributed to the fact that, in the ‘inertial frame’, the A,, are 
non-commuting for all possible gauge choices. 

We close this section with a few remarks concerning the extended object’s relativistic 
displacement and centre of mass vectors. In usual classical mechanics, one typically 
associates the motion of a structureless elementary point particle with the point to 
which the mass (energy due to internal excitations) of the object is attached. In that 
description, the object’s centre coincides with the origin. For the non-local object we 
have a naturally occurring fundamental length which is taken to specify the object’s 
non-trivial extension. Now the centre of the extended object becomes, in its most 
general configuration, displaced from the origin where the relativistic definition of the 
centre of mass is given by the Lorentz four-vector [39,40]: 

where the relativistic displacement: 

P“ 
q, = Jv, - m2 (3.9) 

specifies howlmuch the object’s geom5trical centre is displaced from the origin when 
the velocity P, = P,,(PO)-’ vanishes, P, = (1,0,0,0). When the object is in motion, 
the vector q, signifies how far the centre of mass trajectory is displaced from the origin. 

4. Quantisation and the relativistic Hamiltonian 

So far we have treated the d s  structure group and its SO(3,  1) stability subgroup as 
they pertain to a geometrical gauge theory of a non-local microphysical object in the 
soldered fibre bundle formalism. However, a quantum physical system is not described 
in purely geometrical terms but, according to the fundamental postulates of quantum 
mechanics, by an algebra of operators which act in the space of physical states. In 
particular, according to Wigner [41], one associates with the symmetry group of motion 
in Minkowski space, M 4 ,  the physical states (structureless elementary point particles) 
which are described by the irreducible unitary representation spaces of the Poincarf 
group (the generators of which are represented by the Hermitian operators: momentum 
P,, and total angular momentum JFY = Q,Pv - QYP, + &). In this paper we shall 
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follow Wigner and use the representation spaces of ISO(3, 1) and the algebra of 
observables generated by P, and JFY as a basis for an SO(4, 1 )  gauge-theoretical 
description of extended single hadron systems at the quantised level. 

In order to resolve the well known mass degeneracy (decoupled mass and spin) 
inherent in the PoincarC group description of structureless elementary point particles 
we introduce a symmetry breaking interaction by using a substitution analogous to 
that used in the electromagnetic interaction: the minimal coupling scheme. However, 
the required strength of the symmetry breaking must be on the order of the strong 
interaction thereby supplying a fundamental length leading to a description of extended 
hadronic structures of constant curvature with radius on the order of Rs = 1 fm. 

Therefore we return to the purely gauge-theoretical SO(4, 1) process of development 
and, for the simplest case of non-interacting systems, employ the horizontal Lorentz 
cross section in the unitary gauge such that: 

A, = a, - iAJ,, (4.1) 
where we have used (3.1) and replaced the (geometrical) radius of Z4 with the 
corresponding strength of the symmetry breaking: R-’  = A = 1 GeV. We now go over 
to the position representation where momentum P, = -id, and, correspondingly, 
generalised momentum B, = -iA, give: 

(4.2) 
where J5, is naturally identified with the quantum mechanical analogue of the relativis- 
tic displacement of the system’s origin, (3.9). Therefore, 

B, = P, - AJS, 

J 5 , r  6 , ( = b , M ) = ~ { J , , , P P }  (4.3) 
(where P,P” = M 2  and eP = P,M-’ )  which is, up to a sign, the dimensionless form 
of the quantum mechanical analogue of the relativistic displacement (Finkelstein [42] 
centre operator of the origin type). Therefore, 

A 

B, = P, -Ab, (4.4) 
which generates the motion (in a four-dimensional symmetrically curved d s  space) 
corresponding to that generated by the P, (in a typical Minkowski space) and goes 
over into the motion generated by the P, in the limit of zero curvature (as the strength 
of the symmetry breaking tends to infinity). Clearly, this particular feature of d s  
spacetime is of little significance in the usual cosmological sense where R = m 
which minimises any possible affects that the J 5 ,  might have on the 8, in (4.1). 
However, in the context of the hadronic short-range field described by a metric of the 
d s  type the situation changes since the associated radius is now of the order of 1 fm 
thereby disallowing the approximation of SO(4, 1) with ISO(3, 1). In this realm, one 
cannot ignore the contributions of the 6, in (4.4) which serve to introduce a ds  space 
interaction resulting in a perturbation on the underlying quantum relativistic dynamics 
generated by P, and JPy and eventually lead to a non-degenerate mass-spin trajectory 
relation (as discussed below). It is as if the intrinsic curvature of the d s  fibre space 
has removed the mass degeneracy of the Minkowski space description by supplying 
the necessary symmetry breaking interaction. 

The relativistic displacement vector q,, as expressed by (3.9) has been introduced 
by assuming that the extended object’s centre of mass and origin do not necessarily 
coincide. Quantum mechanically we have that 

--q,QM -= b , ( = 6 , ~ - ’ )  = ;M-’ {J , , ,  (4.5) 
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and, since the angular momentum consists of both orbital and intrinsic components: 

b, =ilk-’{ Q,Pp - QpP, + SWp,  P p }  = Q, + it@,M-’ - (@. Q)@, + d,  

where 

d, = S,pPp 

denotes the intrinsic part of b, such that 

b, = by‘+ b:‘ 

with 

by‘= Q, +i$@,M-‘ - (6 Q)F, b” = d,. 

Therefore 

0, = Y, - d, 

Y, = b, + @,[(@a Q )  -i;M-’]. 

where the quantum relativistic centre of mass: 

However, in the (extended) particle’s rest frame where @, = (1 ,0,0,0) :  

@. b = i3M-l = bo 

(4.6) 

(4.7) 

so that 

Y, = 6, + @,[(@a Q )  -bo]. 

In accordance with the non-qyantum relativistic centre of mass expressed by (3.8) we 
now define proper time, 7 = ( P .  Q )  - bo and 

A 

Y, = b, + P,r. (4.8) 

The commutator of two 4 ’ s  is: 

[d,, d,]=-iM-2(S,,+d,P, -d,P,) 

which suggests the definition of the intrinsic spin tensor: 

Z,” = S,, - d,P, + d,P, 

P,”, ZpuI= -i(gllpL7 + g u 2 , p  - B,rrx”p - k ? ” p q L r r )  

(4.9) 

where 

with: g,, =g,p-@p@p. From the definition (4.6) for d, and (4.9) for Z,, we find the 
following operator identities: 

d,Pp = 0 and PPX,,,, = 0. (4.10) 

Inserting the definition for C,, into .fFv allows the total angular momentum to be 
expressed as J,” = Y,Py - YyP, + X P u  where the quantum relativistic centre of mass 
Y, is given by (4.8). 

The quantum mechanical analogue of the purely gauge-theoretical process of 
development about a small closed curve in spacetime may be expressed according to: 

[ B,  , B,] = A ’[ 6,, 6,] - A ( P,6, - P,6,) - A ( 6,Py - 6,P,). 
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Using the well known commutation relations of the Poincari group with @, = P,M-’ 
and the dimensionless form of the quantum relativistic centre operator, gM given in 
(4.5), we have that 

A A  

Lip, p,1= - i k , u  - P,fiJM and [P,, L l =  i k , ”  - P,P,)M. 
This result leads to the identity 

A A A 

(P,b, - Pub,) - ( b,Pv - b,P,) = 0 

which is recognised as the quantum mechanical equivalent of the geometrical constraint 
of ( 3 . 6 ~ ) .  Therefore we have that 

( 4 . 1 1 ~ )  

where, once again, we have used the expression for g, and the commutation relations 
of the PoincarC group. The SO(4, l )  coupling constant A determines the strength 
(domain) of the self-interaction (compensating) fields 5, and is geometrically related 
with the radius R = A - ’  of the micro-ds space where R serves as a measure of the 
confinement distance (extension) of the isolated non-local object. 

A A  

[ B,, B,] = A ’[ b,, b,] = i A  ’J,. 

Equation (4.1 l a )  together with 

[J,,, J,,1 = --i(g,, Jvu + gvUJFp - gpUJv, - gU,J,,) (4.1 1 b )  

(4.1 IC) 
show that B, and J,” generate another representation of a d s  SO(4, 1 ) .  This representa- 
tion, first introduced by Bohm [43], turns out to play the central role in the construction 
of the model of the ds QRR in that the non-local quantum system is characterised by 
the eigenvalues A’a2 of the second-order Casimir operator of this SO(4, l ) :  

irrep 
h2CII= B,B@ - ( A ’ / 2 ) J , , J p ” ~ A 2 ~ 2  (4.12) 

in the same way that the quantum relativistic (structureless) point particle is charac- 
terised by the eigenvalues m’ of the PoincarC invariant 

irrep , , 
P,P” = m‘c-. 

Substitution of (4.2) into (4.12) gives 
irrep 

A ’c,, = P,P” + :A2 - A’ W (  P,P”)-‘ = A ’CY’ (4.13) 
where the spin operator W (  P,P@)-’ = $ZPyZw” and Zgu is the usual spin tensor which 
satisfies relation (4.9). 

The quantum relativistic Hamiltonian is obtained by applying the methods of 
constrained Hamiltonian mechanics and the constraint for the structureless elementary 
point particle, @ = P,P’ - m2c2 = 0, is replaced with the constraint imposed on the 
second-order invariant of the dS SO(4, 1 ) :  

(4.14) 

The symbol -0 signifies ‘set weakly equal to zero’ since the constraint has nonvanishing 
commutators and one must evaluate all commutation relations prior to imposing the 
constraint. Following the rules of constrained Hamiltonian mechanics, one obtains 
the following quantum relativistic Hamilton operator: 

$j = 4@ b[P,P” -A’W( P,P”)-’+A’($- a’)] (4.15) 

@ = P,P” - A ’  w(P,P~) - ’+  A’($- a’) -0. 
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where 4 is a velocity parameter (Lagrange multiplier) and in the time-like centre of 
mass gauge is determined to be (see Aldinger [23]) #J = -1/2M. The constraint relation 
taken between the canonical basis vectors: l p  s s3) (which form a basis of the space of 
physical states [44]) leads to the mass-spin trajectory relation: 

m 2 =  A2(a2-$)+h2s(s+  1 )  (4.16) 
where 

irrep 
W (  P,P”)-’ = ;(z,,x+”) = s(s+ 1). 

The possible values for the SO(4, 1 )  eigenvalues, A2a2, are limited by restricting the 
a to the principal series representation [45] (only those that go over into the physical 
representations of the PoincarC group) where at > f - s( s + 1 )  thus demanding m2 > 0 
and no tachyonic states arise. 

= f .  An empirical value 
for the hadronic mass (coupling) constant A may be determined from the fits of the 
experimental data and is found to be A = 0.53 GeV which leads to a micro-ds space 
radius R = 0.37 x m (see Aldinger er a1 [22] for a complete description of com- 
parison to the experimental data). 

In the infinite ds space radius limit, when the compensating gauge operators LP 
are ‘turned off’, the generalised momenta: 

and the d s  SO(4, l )  gauge group contracts into ISO(3, 1 ) .  Moreover, in order to obtain 
a faithful representation in this contraction limit (as the strength of the symmetry 
breaking tends to infinity) one must go through a sequence of representations in such 
a way that A2a2+ m2c2 > 0 which characterises the representations of the physical 
PoincarC group. Therefore the second-order invariant of SO(4, l )  reduces according to 

The phenomenological value for ( Y ~ ~ , , ,  = f and for 

B, = P, - A &  -+ P, 

irrep irrep 
P , P , + $ A ~ - A ~ w ( P , P P ) - - ‘ = A ~ ~ ~ ~  P ~ P ’  = m2c2 

where the square of the momentum decouples from the spin and the SO(4, 1 )  Hamil- 
tonian goes over into the familiar Hamiltonian of the structureless quantum relativistic 
mass point which is characterised by the kinematical PoincarC group. 

Thus the curvature of spacetime breaks the mass degeneracy inherent in the flat 
space mass operator where the radius of the curvature plays the role of the symmetry 
breaking interaction. This result should be compared with general relativity which 
requires a spacetime curvature to arise from energies of various interactions. 

If one wants to describe a tower of hadrons (as opposed to a single hadronic bound 
state), where each hadron is considered as a different state of the physical system 
‘hadron tower’, one must take a reducible representation space of the PoincarC group 
and introduce operators which describe transitions between the different irreducible 
representations of ISO(3,l) .  Therefore it cannot be constructed in terms ofthe PoincarC 
algebra and in analogy to the Dirac y-matrices, which fulfil an analogous purpose for 
the theory of the electron, we choose a Hermitian vector operator r P  which together 
with the intrinsic angular momentum S,, (generalisation of the U,,,) form the simplest 
unitary (infinite-dimensional) representation of a ds S0(3,2) .  The r, and S,, satisfy 
the commutation relations: 

[S,”, S,,l= -i(g,os”c+ gv,S,p - g,,s,, -g,S,c) (4.17a) 

[S,,, r,1= i ( g m , r p  -gJ,) (4.17 b )  
[r,, r,] = -iso,. ( 4 . 1 7 ~ )  
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The additional representation fixing relation: 

V p ,  I-,)+ isp,, s,pl = -gpu (4.18) 

(Majorana representation) specifies, of the many irreducible representations of the 
commutation relations (4.17a-c), the four Majorana representations [46] whose main 
feature is that they contain only one irreducible representation of the SO(3, l)swv 
subgroup. (Equation (4.18) is the analogue of the relation { T H , T V } = f g , Y  for the 
four-dimensional Dirac case.) 

One of the many consequences of the representation fixing relation of (4.18) is that 
the spin operator: 

(4.19) W(P,P,)-’ = jz,,z*v = (6 r)2 - f 
which gives the following in an irreducible representation: 

irrep 
w(P,P*)-’ = (s + +)’ - 4 = s (s  + 1) (4.20) 

where spin-s = 0, f ,  1, 3, .  . . . Therefore, with the substitution of (4.20) into (4.15) we 
may express the quantum relativistic Hamiltonian valid in the Majorana representation 
of S0(3,2)  as: 

1 
2 M  

QMa’ = -- [p,p, - A’(@. r)’+ A’($ - a2)] (4.21) 

which shall be used in the following section to determine the system’s dynamical 
equations of motion. 

5. Quantum relativistic dynamics 

In order to obtain the time derivatives of the physical observables, C, the quantum 
analogue of constrained Hamiltonian mechanics is used and, therefore, the derivatives 
with respect to the evolution parameter 7 (proper time) are evaluated using dC/dT = 

= -i[C, QMaJ] prior to imposing the constraint of (4.14). Using (4.21) for the 
relativistic Hamiltonian, the following 7 derivatives are obtained: 

=S,,@P=;A~{B.I-, r, -(B.r)@,}M-1 ( 5 . 1 ~ )  

(where the fact that iH = 0 has been used), 

r, = - f A 2 ( @ T ,  ci,}M-’ (5.lb) 

and 

0, = @, - A ’ ( @ a  I-) T, M -2 + A ’ ( @. r )’ @H,M-2 + if A ’ dH M -’. ( 5 . 1 ~ )  

An explicit 7-dependent expression for the particle position Q , ( T )  may be obtained 
by directly integrating ( 5 . 1 ~ )  leading to 

Q,( 7) = @,T - A 2 ( @ p T p ) M - 2  r,( T )  d7+ A’( @pI‘p)2M-2@,7 I 
( 5 . 2 )  
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where D, is a r-independent constant of integration. Furthermore, we have that 

f‘, (7 )  = - A 2 (  I%,) M-’d, (7 )  - i&A2M-’pw( 7) 

and 

&( 7) = A 2 (  @T,) M-’p,( 7) - i iA2  M-’j,( 7) 

the solutions to which may be expressed as: 

where the fundamental mode operators (see Aldinger [ 231) 

A, = i; + iA: 

with 

(5.3a) 

(5.3b) 

(5.4a) 

(5.4b) 

(5.4c) 

Substituting (5.3~2 and b) into (5.2) yields: 

Q, ( 7) = b, + @,T - d, (7)  ( 5 . 5 )  

where the term b,+fi,T describes the collective motion of the centre of mass of the 
non-local object with centre of mass 

A 

Y, = 6, + P,T 

already given in (4.8). The other term, which can be expressed as 

A 2  A 
X d,=--exp(-i-7) i A 2  [ e ~ p ( - i n ~ ~ ~ ~ r , ) 7 ) ] n - ’ A , ~  (5.6) 

M 2 M  ,,=-= 

where we must restrict the modes to n = *l and A:, = A,-, , describes the system’s 
internal motions. 

Equation ( 5 . 5 )  with (5 .6 )  should be compared with the general solution to the 
particle position equation of motion for the quantum relativistic string [47-501 where 

where T is a constant with dimension (mass)2, when the string’s excitations are restricted 
to the lowest mode ( n  = kl) and one considers the dynamics at one endpoint only, 
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i.e. (T = 0 where x, ( (T, T )  characterises the individual positions along the string’s surface 
with T~ s T s T~ and 0 (T L, and where L is the string’s length. 

The time derivative of total angular momentum is: 
i 1  i 1  

j,,, = Y,P” - Y,P, + 2,” = Y,pY - Y,,P, + 2,” 
where 

2,” = 0 and J P y  = 0. 

Therefore Y, must be parallel to P, (and that ?, must be parallel to @,). This, then, 
establishes the Zitterbewegung: as T proceeds, the expectation value (I Y,I) of the centre 
of mass operator follows a straight worldline in a direction parallel to (]PPI), and the 
particle position ( 1  Q, I)=( I Y, I)-( Id, I) performs a helical motion about this worldline 
with a rotational frequency according to (5.6) given by 

which, for R on the order of one fermi and using the proton mass yp, gives a frequency 
of the order of Hz. In the infinite symmetry breaking limit, d^ and d^ go to zero. 
That is, a relativistic mass point does not perform Zitterbewegung. Thus, it is the 
Zitterbewegung that causes the hadronic ‘size’ and modifies the affine (PoincarC) 
description for the extensionless rotator into that of the d s  description which is a d s  
space of radius R on the order of a fermi, i.e. an extended relativistic object. 

We can also obtain an idea for the ‘size’ of the QRR, i.e. the radius of the spiral 
given by: 0. One may directly verify that in the Majorana representation: 

1 1  

d,dP = -:- @ =  -”(p 2 Aprp)2 .  
This expression taken between rest states Ip = 0, s s3),  leads to 

d 2 = ( S 3  s Ol-d,d’~O, S S ~ ) = ( S ~  s Old’IO, S S ~ )  

and has the spectrum 
1 

m 
d 2 =  [a+  S ( S  + l ) ]  7. 

With the mass formula (4.15), one obtains 

d =‘( 1 
A ~ + ( ( C Z ’ - ~ ) / [ ( S + ~ ) ~ + ~ ] }  

which is seen to be on the order of l/A and approaches l/A 
1 / A  = R was the radius of the ds space in which S O ( 4 , l )  acts as the symmetry group 
of motion. Furthermore, from (5.7) we have that d2 = constant leading to the descrip- 
tion of a rigid rotating system. (That is, for the special case of the Majorana representa- 
tion we have a simplified model in which there is no way to incorporate the fine 
structure effects due to centrifugal stretching and in order to consider these effects, 
one would have to go to a more general representation of S0(3,2)) .  

The commutation relations of the relative (internal) variables with the system’s 
centre of mass momentum: 

1 

[P,, & I =  0 = [P,, 4 1  
display the fact that the relative variables are translationally invariant while 

[b , ,  d,] =id,P,M-2 [ b,, h,] = ihPPvM-’ 

(5.7) 

for large values of s. 
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show a non-trivial ‘mixing’ between the relative (internal) position and the system’s 
spacetime (external) centre operator o,f the origin type. 

From the orthog:n$ty_relation. Ppd, = 0, and the explicit form of d,, given by 
(5.3b), we have that P. A = Pa A’ = 0 (i.e. the fundamental mode operators are space-like 
four-vectors). Therefore for the model of the QRR we have an orthogonality relation 
which leads to an operator identity ensuring the elimination of ghost states. This 
method of ghost elimination is reminiscent to that of the covariant non-canonical 
relativistic string in the centre of mass gauge [49] where P. 6 = 0 (which implies Pa a, = 0 
for n > 0) guarantees a positive definite Hilbert space. 

The d s  QRR mode operators satisfy the following set of commutation relations: 

[A,, A,] = [A;, a:] = 0 
A A  A [A,, A;] = -&gPy - p,pu)(p”rp) -tiXPY 

which does not agree with the covariant canonical or, for that matter, non-canonical 
algebra of the quantum relativistic string for which: 

[a”, a ,”I = 0 = [a:’,  a ,”+I 
[ a $ ,  a , ” + ] = ( g ~ ” ” - F ~ F ” ) 6 , , ,  (m,  n > 0 ) .  

Therefore one must conclude that the d s  QRR mode operators are not ordinary operators 
of the harmonic oscillator type. However, they do satisfy the following relations (where 

A 1  

A Z =  ppr,): 
A A  

[A’, A,] = -A, 
[AL) A;] = A; 
[A,, A,+] = - $ A 2  

[ A 2 ,  A,] = 0 = [A2,  A;] 
and 

where 

A l =  ( A ; ) 2 +  (A;)> = f(6.r P 4  ) *  -1 

and (13. I‘) has the spectrum n ( = s + f for the special case of the Majorana representation 
used here). Therefore the basic action of the QRR mode operators is to raise and lower 
spin for this particular representation and should, therefore, be considered as new 
relativistic analogues of the usual ladder operators of angular momentum. 

6. Conclusions 

A geometrical SO(4, 1 )  gauge theory for a collective model description of relativistically 
extended hadronic bound states, valid in the strongly-interacting regime of QCD, is 
established by considering a d s  fibre bundle with Cartan connection. The full d s  
symmetry is broken down to that of its SO(3,l)  stability subgroup leading to a 
non-linear realisation of S O ( 4 , l )  on the homogeneous non-compact coset space X 4  = 
SO(4, l ) /S0(3,  l ) ,  the closed d s  universe. The symmetry breaking parameter is the 
radius of X4 where the direction of the breaking is specified by the usual Higgs-type 
mechanism. The resulting Goldstonians are taken to represent coordinates of a point 
in X 4  and are used, along with the original linear gauge fields, to define the (short-range) 



Geometrical SO(4, 1 )  gauge theory 1905 

vierbein and spin connection. The usual concept of parallel transport across spacetime 
is generated by using the covariant derivative defined in terms of the spin connection 
leading to the (short-range) SO(3, l )  curvature field. 

We write down a Lagrangian that is quadratic in the curvature of the Cartan 
connection leading, after pullback, to a system of coupled equations for curvature and 
torsion in P’(m4, SO(3, 1 ) ) .  Under contraction of SO(4, 1 )  to ISO(3, 1 )  (when the dS 
length is large) the equations become Yang’s equation and Einstein’s equation extended 
by torsion. We interpret the d s  symmetry breaking parameter as a fundamental length 
appropriate as the scaling parameter relevant to hadron physics thereby introducing 
a new large ‘cosmological constant’ (vacuum polarisation) in the resulting relativistic 
field equations. Therefore the space within a hadron becomes strongly curved and 
might cause, in the most symmetrical state, a metric of the ds  type where the associated 
Schwarzschild radius (Compton wavelength) acts as a natural confinement mechanism. 

In order to arrive at the complete geometrical picture entailing the effects of both 
spacetime curvature and torsion while retaining the full Yang-Mills gauge-theoretic 
concept throughout, we introduce a generalised covariant derivative along with its 
associated notion of parallel transport which is a SO(4, 1 )  (curved space) generalisation 
of the process known from differential geometry as development into the flat affine 
tangent space of a differentiable manifold. The generator of the development process 
is defined in terms of the linear gauge fields (which generate pseudo translations and 
rotations in X4) and is a purely gauge-theoretic expression which serves to map curves 
and vector fields in spacetime into their X4 images. The procedure essentially allows 
one to interpret the local choice of origin and coordinate axes orientation of Z4 as the 
freedom in making pseudo translational and rotational gauge choices. Geometrically, 
development about a small closed curve in spacetime leads to the proper interpretation 
of spacetime curvature and torsion. 

The usual gauge concept of particle interactions for a relativistic theory (the minimal 
coupling scheme) is employed by interpreting the quantised SO(4, l )  generator of 
development as the SO(4, l )  ‘generalised momentum’ in which the pseudo translational 
piece supplies an experimentally detectable perturbation (hadron extension) to the 
conventional Minkowski description and gives some indication as to how much the 
extended microstructure’s centre is displaced from the origin. (We have transformed 
from a passive Minkowski background without an interaction (arena for structureless 
elementary point particles) to a dynamical curved-space that forms an inseparable part 
of the non-local hadronic bound state.) 

The ‘generalised momenta’ (under the horizontal Lorentz cross section in the unitary 
gauge choice) together with the SO(3, l )  generators of angular momentum supply 
another representation of a ds SO(4, 1 )  which forms the central feature in a quantum 
relativistic interpretation of an SO(4, 1 )  gauge theory in that the non-local object is 
now characterised by the eigenvalues of the second-order SO(4, l )  invariant operator 
in the same way that the structureless elementary point particle (without interaction) 
is characterised by the eigenvalues of the PoincarC invariant PFPp -2- m 2 c 2 .  Using 
the usual rules of Dirac’s constrained Hamiltonian mechanics, the second-order 
SO(4 , l )  invariant is found to supply an experimentally verifiable mass-spin trajectory 
relation of the form m 2  = m i +  A2s(s + l ) ,  thereby resolving the well known mass 
degeneracy inherent in the PoincarC group approach. The strong gravitational constant, 
A = R - ’ ,  represents the strength of the symmetry breaking interaction and from the 
known experimental data A =0.53 GeV leading to a micro-ds space radius (hadron 
extension) of R = 0.37 x 

irre 

m. 
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In order to describe a ‘tower’ of hadrons where each hadron resonance is considered 
as a different state of the ‘hadron tower’ (physical system describing the quantum 
relativistic rotator, QRR),  we introduce a Hermitian spin-changing vector operator 
which together with the intrinsic angular momentum forms the algebra of a d s  S0 (3 ,2 ) ,  
the system’s relativistic spectrum generating group. The special class of Majorana 
representations of SO(3,2) leads to a rigid rotator model (no elasticity) and a relativistic 
Hamiltonian which is used to determine a completely solvable set of dynamical 
equations of motion resulting in standard features of extended object dynamics such 
as the Zitterbewegung with a calculated frequency on the order Hz. 
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